

Does drug innovation change compliance in combined treatments?

MONOCLONAL ANTIBODIES AND SMALL MOLECULES

Dott. Fabio Marazzi
UOC Radioterapia
Fondazione Policlinico Gemelli IRCCS - Roma

Index

- Introduction
- · Monoclonal antibodies and radiotherapy: adjuvant and metastatic setting
- Small molecules and radiotherapy: adjuvant and metastatic setting
- Conclusion

Introduction

SISTEMIC THERAPY EVOLUTION IN CANCER TREATMENT

Annals of Oncology 29: 1895–1902, 2018 doi:10.1093/annonc/mdy263 Published online 21 August 2018

A framework to rank genomic alterations as targets

for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)

J. Mateo¹, D. Chakravarty², R. Dienstmann¹, S. Jezdic³, A. Gonzalez-Perez⁴, N. Lopez-Bigas^{4,5}, C. K. Y. Ng⁶, P. L. Bedard⁷, G. Tortora^{8,9}, J.-Y. Douillard³, E. M. Van Allen¹⁰, N. Schultz², C. Swanton¹¹, F. André^{12*} & L. Pusztai¹³

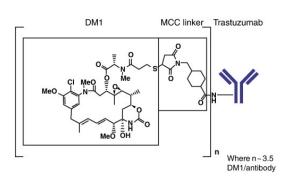
CYTOTOXIC DRUGS TARGET THERAPIES ANTRACICLINE **TAXANES IMMUNOTHERAPY ORMONAL THERAPIES ALKILANTS** HER2 TARGET THERAPIES **FLUOROPIRIMIDINE CAR-T CELL THERAPY** ANTI PD1/PDL1 PARP INHIBITORS PLATINUM COMPAUNDS CTLA4 CDK4/6 INHIBITORS VINKA ALCALOIDES PI3KCA ALFA INHIBITORS **MICROTUBLE INIBITORS** PI3KCA BETA SPARING DIAGNOSTIC MORPHOLOGICAL AND MOLECULAR **ANTI-EGFR EVOLUTION** ANTI-TKI ANTIBODY DRUGS CONIUGATE NEW DRUGS IN THE ERA OF PRECISION MEDICINE → ADC ESSENTIAL ROLE OF PREDICTIVE AND PROGNOSTIC **MARKERS**

Introduction

- In 2021 FDA approved 43 drugs
- 15 drugs were approved for cancer treatment
- 10 small molecules (1 anti-CDK4/6, 1 c-MET inhibitor, 1 PI3K inhibitor, 4 anti-TKI, 1 KRAS inhibitor, 1 enzyme, 1 interferon)
- 1 drug-conjugate small molecule (1 peptide)
- 2 monoclonal antibodies (1 anti-PD1, 1 biphasic anti EGFR-anti MET)
- 2 drug-conjugate monoclonal antibodies (1 anti-CD19, 1 anti-TF)

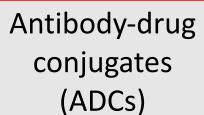
No.	Drug Name	Active Ingredient	Approval Date	FDA-approved use on approval date*
43	Besremi	ropeginterferon alfa-2b-njft	11/12/2021	To treat polycythemia vera, a blood disease that causes the overproduction of red blood cells Press Release
42.	Scemblix	asciminib	10/29/2021	To treat Philadelphia chromosome-positive chronic myeloid leukemia with disease that meets certain criteria
41.	<u>Tavneos</u>	avacopan	10/7/2021	To treat severe active anti-neutrophil cytoplasmic autoantibody-associated vasculitis (granulomatosis with polyangiitis and microscopic polyangiitis) in combination with standard therapy, including glucocorticoids
40.	Livmarli	maralixibat	9/29/2021	To treat cholestatic pruritus associated with Alagille syndrome
39.	<u>Qulipta</u>	atogepant	9/28/2021	To prevent episodic migraines
38.	Tivdak	tisotumab vedotin-tftv	9/20/2021	To treat recurrent or metastatic cervical cancer with disease progression on or after chemotherapy
37.	<u>Exkivity</u>	mobocertinib	9/15/2021	To treat locally advanced or metastatic non-small cell lung cancer with epidermal growth factor receptor exon 20 insertion mutations
36.	Skytrofa	lonapegsomatropin-tcgd	8/25/2021	To treat short stature due to inadequate secretion of endogenous growth hormone
35.	Korsuva	difelikefalin	8/23/2021	To treat moderate-to-severe pruritus associated with chronic kidney disease in certain populations
34.	Welireg	belzutifan	8/13/2021	To treat von Hippel-Lindau disease under certain conditions
33.	<u>Nexviazyme</u>	avalglucosidase alfa-ngpt	8/6/2021	To treat late-onset Pompe disease Press Release

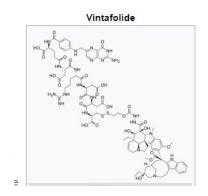
Novel Drug Approvals for 2021 | FDA




Introduction

Trastuzumab





RADIOTHERAPY
SINERGIC EFFECT

Small molecule drug-conjugates (SMDCs)

<u>Targeted Therapy for Cancer - National Cancer Institute</u>

TRASTUZUMAB: clinical evidences

tWald y2 P value for overall arm effect.

Radiotherapy Breast Cancer: the NCCTG P

Michele Y. Halyard, Thon Larry Marks, Nancy Daviand Edith A. Perez

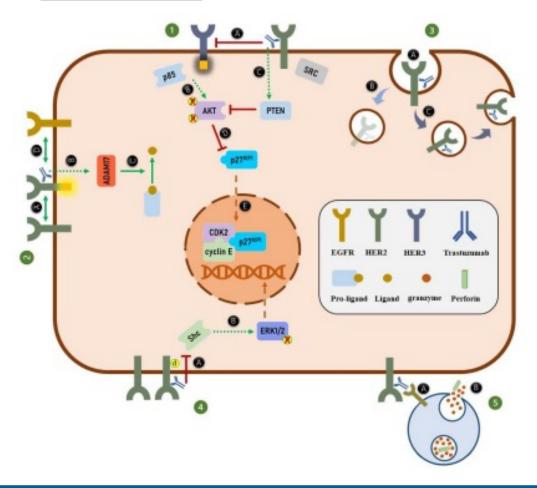
Type of RT

Whole-breast RT
Whole-breast plus region
Postmastectomy chest v
Postmastectomy chest v
Ivmphatic RT

Cide Assets desitts DT

	% of Patients			AC-T v AC-T-H*			AC-T v AC-TH-H*	
Adverse Event	AC-T (n = 521)	AC-T-H (n = 543)	AC-TH-H (n = 439)	P*†	OR	95% CI	OR	95% CI
Grade ≥ 1								
Radiation dermatitis	84	84	85	.79	0.97	0.69 to 1.34	1.09	0.76 to 1.55
Pneumonitis or pulmonary infiltrates	0.6	1.1	1.1	.59	1.93	0.48 to 7.75	1.97	0.47 to 8.31
Dyspnea	1.9	2.4	2.3	.86	1.25	0.55 to 2.88	1.18	0.49 to 2.87
Cough	2.9	2.4	2.3	.81	0.83	0.39 to 1.76	0.78	0.35 to 1.75
Radiation dysphagia (esophageal)	1.6	1.5	2.7	.30	0.96	0.36 to 2.58	1.79	0.72 to 4.42
Leukocytes	7.2	12.8	10.3	.01	1.89	1.25 to 2.88	1.47	0.93 to 2.32
Neutrophils or granulocytes	3.7	6.5	5.0	.12	1.81	1.02 to 3.21	1.37	0.73 to 2.57
Grade ≥ 3								
Radiation dermatitis	5.6	5.9	4.3	.51	1.06	0.63 to 1.78	0.76	0.42 to 1.38
Pneumonitis or pulmonary infiltrates	_	0.2	_	_	_	_	_	_
Dyspnea	0.6	_	_	-	_	-	_	
Cough	_	_	_	_	-	88	_	20-0
Radiation dysphagia (esophageal)	_	_	_	_	_	_	_	_
Leukocytes	0.2	0.6	1.1	.23	2.87	0.30 to 27.69	5.91	0.69 to 50.78
Neutrophils or granulocytes	0.2		0.5	.78		_	2.35	0.21 to 25.98

*Based on a logistic regression model of the given adverse event containing a single predictor variable (arm: AC-T v AC-T-H v AC-TH-H).



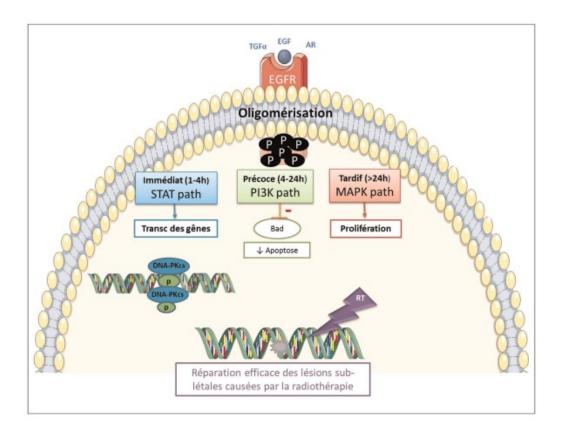
NCCN Clinical Practice Guidelines – Breast Cancer – v.08.2021 10.1200/JCO.2008.17.9549 Journal of Clinical Oncology 27, no. 16 (June 01, 2009) 2638-2644

TRASTUZUMAB: biomolecular effect

Molecular effect

 Blocking of the proteolytic cleavage and dimerization of the HER2 receptor, thereby blocking the ligandindependent signaling and downstream signaling pathways (inhibition of PI3K-Akt and MAP kinase signaling pathways)

Immune effect


• Stimulation of innate cellular immunity by recruiting natural killer cells and macrophages (ADCC) by recognition of FcyRs

Cancers 2021, 13, 3540. https://doi.org/10.3390/cancers13143540

TRASTUZUMAB: biomolecular effect and radiotherapy

Molecular sinergic effect

- Trastuzumab reduces phosphorylation hence the inactivation of the different signaling pathways causing radioresistance
- In vitro association, showed a 4,5 times implementation of apoptosis

Possible side effects

- HER2 receptor has a cardioprotector role -> its inhibition can cause a slow reparation of cardiomyocites
- Trastuzumab can activate apoptosis in cardiomyoctes

https://doi.org/10.1016/j.bulcan.2020.12.012

PERTUZUMAB: clinical evidences

APHINITY: 2nd INTERIM OS ANALYSIS SABCS 2019

delines Index of Contents Discussion

docetaxel or 12 weekly cycles of paclitaxel; or 89.2% was assumed for the placebo group, on 6 cycles (every 3 weeks) of docetaxel plus carboplatin. Patients with hormone-receptor-positive tumors received standard endocrine therapy starting at the end of chemotherapy; the endocrine therapy was planned to continue for at least 5 years. Radiotherapy was given as clinically indicated at the end of chemotherapy and concomitantly with anti-HER2 treatment.

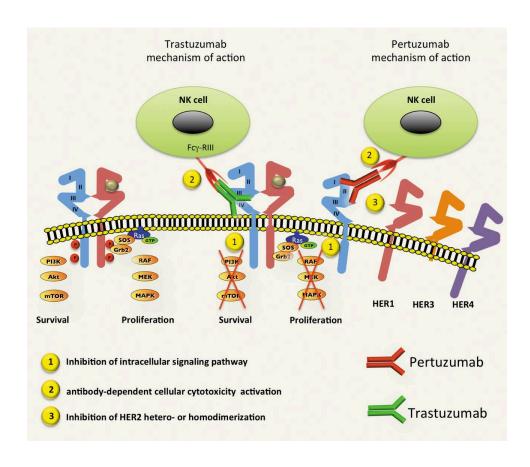
A physical examination and an assessment of safety and concomitant medications were con-

the basis of the results of the Breast Cancer International Research Group 006 trial,3 and a rate of 91.8% was assumed for the pertuzumab group, with approximately 379 events required for the primary analysis.

Secondary End Points

The secondary end points included overall survival, disease-free survival (including noninvasive breast cancers), invasive-disease-free survival (in-

124


N ENGL J MED 377;2 NEJM.ORG JULY 13, 2017

NCCN Clinical Practice Guidelines – Breast Cancer – v.08.2021 J Clin Oncol. 2021 May 1;39(13):1448-1457. doi:10.1200/JCO.20.01204

PERTUZUMAB: biomolecular effect

Molecular effect

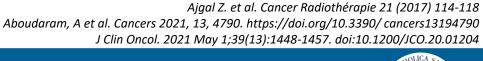
- Prevention of potent ligand-dependent HER2/HER3 heterodimerization
- Suppression downstream PI3K,
- Suppression MAPK pathways

Immune effect

 Stimulation of innate cellular immunity by recruiting natura killer cells and macrophages (ADCC)

Am J Cancer Res 2020;10(4):1045-1067 www.ajcr.us /ISSN:2156-6976/ajcr0109526

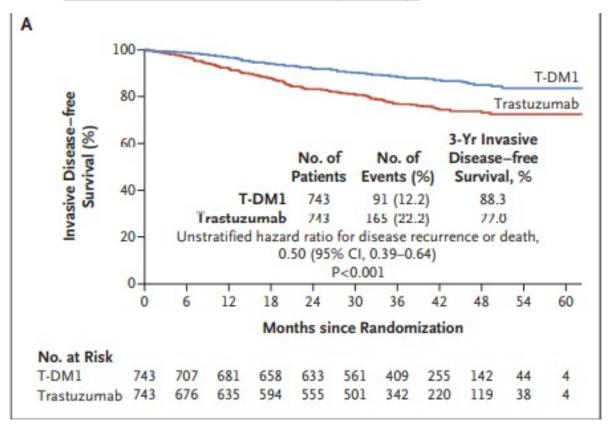
PERTUZUMAB: biomolecular effect and radiotherapy

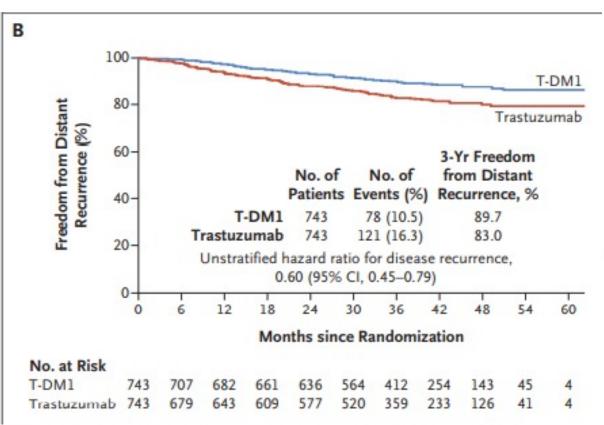

<u>Very FEW DATA -></u> pertuzumab is always associated with trastuzumab during irradiation

Molecular sinergic effect

 Association of pertuzumab and trastuzumab with radiotherapy probably further reduces radioresistance of HER2+ tumors

Possible side effects


- HER2 receptor has a cardioprotector role -> its inhibition can cause a slow reparation of cardiomyocites
- Dual blockage + radiotherapy -> compared to an increased fear of toxicity rate clinical data are reassuring
 - Ajgal Z et al. 2016: 23 pts -> 1 case of asymptomatic <50% LVEF; 1 case of grade 3 radiodermitis
 - Aboudaram A. 2021: 55 pts -> 3 cases of grade 3 radiodermitis (5.4%), but no significant gastrointestinal or cardiac toxicity
 - APHINITY Trial 2021: 4805 pts -> primary cardiac events remain < 1% in both the treatment groups



TRASTUZUMAB EMTASINE (T-DM1): clinical evidences

T-DM1 reduces the risk of IDFS of 50% respect trastuzumab

NCCN Clinical Practice Guidelines – Breast Cancer – v.08.2021 Von Minckwitz G et al. N Engl J Med 2019; 380:617-628

T-DM1: biomolecular effect

Trastuzumab Emtansine (T-DM1): Mechanism of Action Trastuzumab-specific MOA Antibody-dependent cellular cytotoxicity (ADCC) Inhibition of HER2 signaling Inhibition of HER2 shedding Emtansine release Inhibition o microtubule polymerization nternalizatio Nucleus

Molecular effect

- T-DM 1 retains all mechanisms of action of anti-HER2 monoclonal antibodies drugs
- Through lysosome internalization Emtasine inhibits microtubule polymerization blocking cells and leading them to mitototic arrest, apoptosis, mitotic catastrophe and disrupted intracellular trafficking

Immune effect

 T-DM1 retains also stimulation of innate cellular immunity by recruiting natura killer cells and macrophages (ADCC)

> LoRusso PM et al. Cliln Cancer Res 2011 Barok et al. Breast Cancer Research 2014, 16:209

T-DM1: biomolecular effect and radiotherapy

Molecular sinergic effect

- Anti-HER2 + RT sinergic effects are retained
- Anti-tubulin drugs have a comprovate radiosensitizing role
- Emtasine delivery directly into tumor cells allows to radiosensitize only tumor

Possible side effects

Overall Safety

During T-DM1 therapy (n = 148), the most common any-grade AEs were nausea (37.8%; n = 56) and headache (37.2%; n = 55; Table 4). Fifty-seven patients (38.5%) experienced grade 3 AEs, and four (2.7%) experienced grade 4 AEs; there were no grade 5 AEs. The most common grade \geq 3 AEs were thrombocytopenia (8.1%; n = 12), increased ALT (7.4%; n = 11), and increased AST (7.4%; n = 11; Table 4). Fifteen patients (10.1%) experienced serious AEs during T-DM1 therapy, with atrial fibrillation (n = 2), pyrexia (n = 2), and device-related infection (n = 2) occurring in > one patient. No

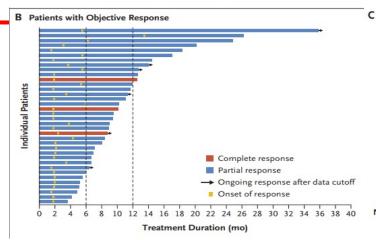
was the only grade 3 AE reported in \geq two patients administered concurrent hormonal therapy.

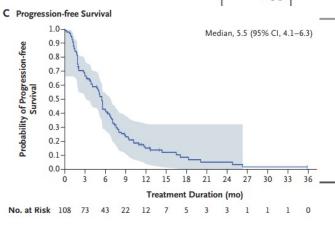
During concurrent T-DM1 and radiotherapy (n = 39), three patients (7.7%) had grade 3 AEs (one each: neutropenia, asthenia, erythema), and one patient (2.6%) experienced radiotherapy-associated pneumonitis (grade 2). During sequential radiotherapy (n = 77), two patients (2.6%) had grade 3 AEs (neutropenia, radiotherapy pneumonitis), and one additional patient had grade 2 radiotherapy pneumonitis; thus, in total, 2.6% of patients experienced radiotherapy-associated pneumonitis. No grade 4 AEs were reported during concurrent or sequential radiotherapy.

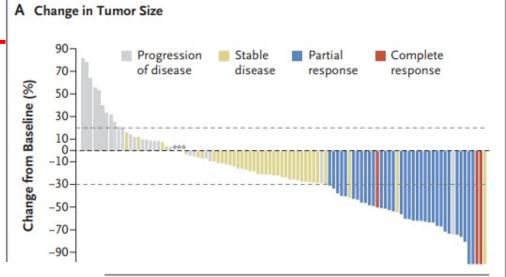
© 2015 by American Society of Clinical Oncology 1139

Event	Trastuzumab Group (N = 720)	T-DM1 Group (N=740)
	no. of patie	ents (%)
Any adverse event	672 (93.3)	731 (98.8)
Grade ≥3 adverse event	111 (15.4)	190 (25.7)
Adverse event leading to death†	0	1 (0.1)
Serious adverse event	58 (8.1)	94 (12.7)
Adverse event leading to discontinuation of trial drug;	15 (2.1)	133 (18.0)
Grade ≥3 adverse event that occurred in ≥1% of patients in either group		
Decreased platelet count	2 (0.3)	42 (5.7)
Hypertension	9 (1.2)	15 (2.0)
Radiation-related skin injury	7 (1.0)	10 (1.4)
Peripheral sensory neuropathy	0	10 (1.4)
Decreased neutrophil count	5 (0.7)	9 (1.2)
Hypokalemia	1 (0.1)	9 (1.2)
Fatigue	1 (0.1)	8 (1.1)
Anemia	1 (0.1)	8 (1.1)

Adams SR et al. Nature Communications 7: 13019 Von Minckwitz G et al. N Engl J Med 2019; 380:617-628

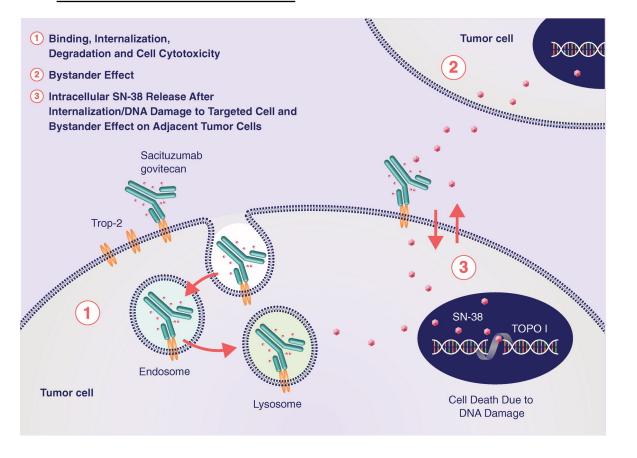





SACITUZUMAB GOVITECAN: clinical evidences

Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer

A. Bardia, I.A. Mayer, L.T. Vahdat, S.M. Tolaney, S.J. Isakoff, J.R. Diamond, J. O'Shaughnessy, R.L. Moroose, A.D. Santin, V.G. Abramson, N.C. Shah, H.S. Rugo, D.M. Goldenberg, A.M. Sweidan, R. Iannone, S. Washkowitz, R.M. Sharkey, W.A. Wegener, and K. Kalinsky


GT (gemcitabine/paclitaxel)
Gemcitabine/carboplatin
Paclitaxel/bevacizumab^{h,i}
Carboplatin + paclitaxel or albumin-bound paclitaxel

NCCN Clinical Practice Guidelines – Breast Cancer – v.08.2021 Bardia A et al. N Engl J Med 2019; 380(8):741-751

Sacituzumab Govitecan: biomolecular effect

Molecular effect

- TROP-2 is a signal trasducer that play a role in cell growth, migration and invasion
- In solid epithelial cancers is highly overespressed
- Sacituzumab link TROP-2 to selectively deliver SN-38 (active metabolite of irinotecan) into tumor cell
- SN-38 delivered inside cell targets Topoisomerase I with damage and cellular apoptosis
- Due to its permeability, free SN-38 can leave the cell and give antitumor effects in adjacent tumor cells

Rugo HS et al. Future Oncology, 16;12

Sacituzumab Govitecan: biomolecular effect and radiotherapy

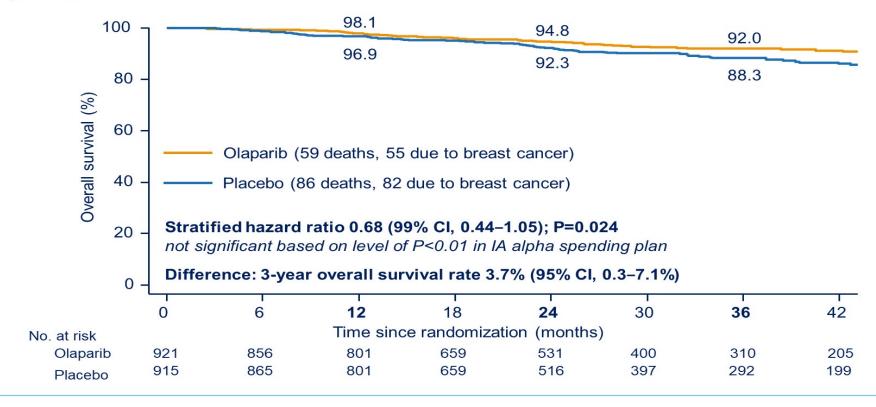
Increment in apoptosis?

Increment in SN-38 release?

Increased cell permeability?

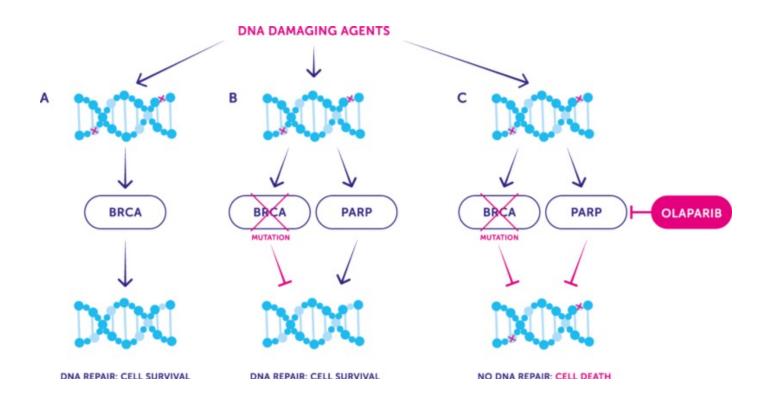
NEED OF MORE CLINICAL DATA

Sacituzumab Govitecan +/- Pembrolizumab In HR+ / HER2 - MBC - Full Text View - ClinicalTrials.gov



OLAPARIB: clinical evidences

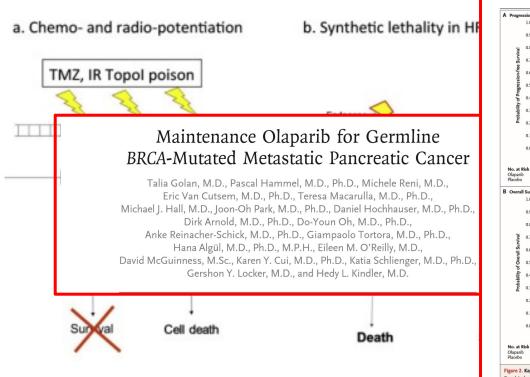
OlympiA: Overall survival

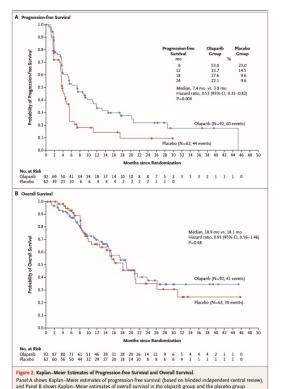


NCCN Clinical Practice Guidelines – Breast Cancer – v.08.2021 10.1200/JCO.2021.39.15_suppl.LBA1 Journal of Clinical Oncology 39, no. 18_suppl

OLAPARIB: biomolecular effect

Molecular effect


- PARP inhibitor block poly-polymerase enzymes (PARP1, PARP2 and PARP3)
- PARP enzymes partecipates to DNA trascription, cell cycle regulation and DNA repair
- When a BRCA mutation is present, PARP inhibition induces increment of formation of double stranded DNA breaks, disruption of cellular homeostasis and cell death


Olaparib: realising the promise of synthetic lethality | by Research at CRUK | Medium

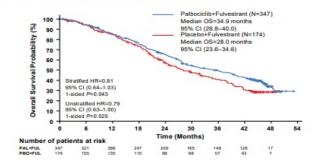
OLAPARIB: biomolecular effect and radiotherapy

ular effect

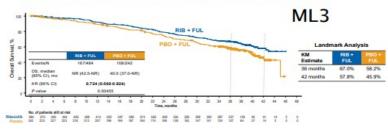
diotherapy causes different DNA mages (base modifications, single and uble-strand breaks) that lack of BRCA d PARP inhibition are conditions not ourable for repair

RP inhibitors and RT have a mprovate sinergic effect in promotion cell death

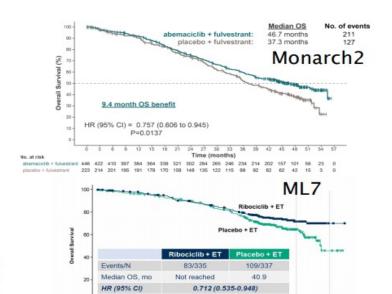
Curtin NJ et al. Anticancer therapy and beyond. Mol. Asp. Med. 2013, 34, 1217–1256



PALBOCICLIB/RIBOCICLIB/ABEMACICLIB: clinical evidences

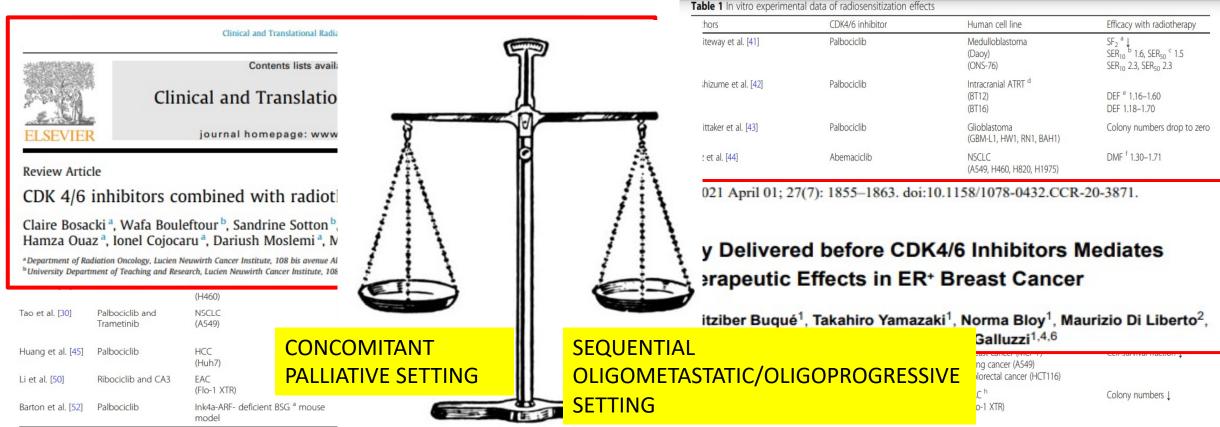

MUKLINIKU

HR+ HER2- metastatic breast cancer Consistent OS advantage for CDK 4/6i


OVERALL SURVIVAL IN PALOMA-3 (ITT)

Overall Survival The reduction in relative risk of death with RIB was 28%

Metastatic breast cancer | LMU breast center | www.lmu-brustzentrum.de | 24.05.2020


Christofanilli et al, 2018; Hurvitz et al, 2019; Slamon et al, 2019; Sledge et al, 2019

NCCN Clinical Practice Guidelines – Breast Cancer – v.08.2021 Cristofanilli et al, 2018; Hurvitz et al 2019; Slamon et al 2019; Sledge et al. 2019

PALBOCICLIB/RIBOCICLIB/ABEMACICLIB: biomolecular effect and radiotherapy

^a BSG, brainstem glioma

Lange et al. Endocrine Rel Cancer 2011; Finn Slamon et al. Breast Cancer Res 2009 Yang Y et al. Jour Exper Clin Cancer Resear 2020 39;188

ANTI-EGFR and ANTI-TKI: clinical evidences in oligoprogressive I

Advanced EGFR-mutant NSCLC patients 1st. or 2nd-generation EGFR TKIs

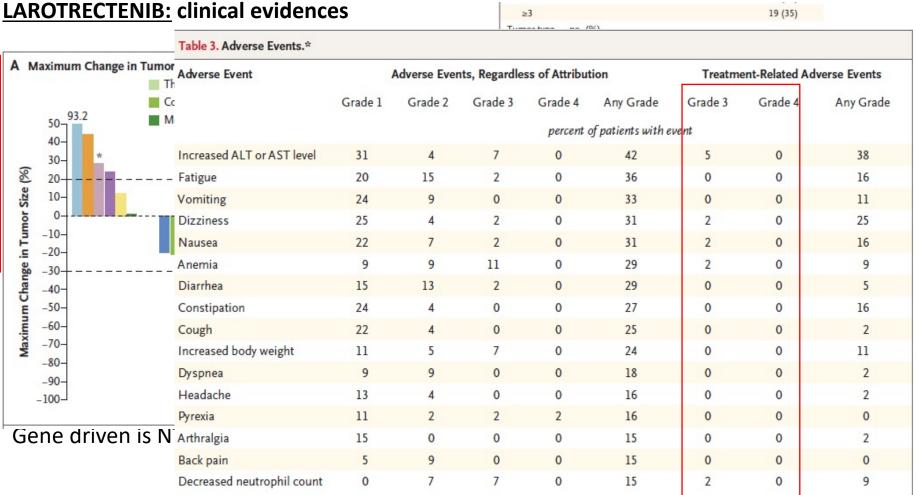
Author, ref.	No pts	Molecular status	Therapy	Median PFS	Median OS	Toxicity
Wang et al., (79)	14	UNK	G, SBRT	7	19	G3 pneumonitis 7%, esophagitis 7%, rash 7%, no G4/5
lyengar et al., (80)	24	0/13 EGFR+, other UNK	E, SBRT	14.7	20.4	G5 1 pt
Yu et al., (81)	18	EGFR+	E, G, SBRT	10	41	G4 SBRT-related 1 pt, G4 TKI-related 4 pts
Weickhardt et al., (76)	25	EGFR+, ALK+	E, C, SBRT	PFS 2-6.2 (from progression on TKIs)	NR	G1/2 fatigue 16%, G1/2 nausea 5%, no G3/4 toxicity
Conforti et al., (82)	15	EGFR+	E, G, SBRT	10.9	39	No G3/4 toxicity
Gan et al., (83)	14	ALK+	C, SBRT	9.1	39	No >G2 tocixity
Borghetti et al., (86)	50	EGFR+, ALK+	E, G; C; SBRT, HRT	5.5	19.3	G3 neurologic: 2 pts

ref, reference; pt, patient; UNK, unknown; SBRT, stereotactic body radiotherapy; PFS, progression free survival; CS, overall survival; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; G, Gefitinib; E, Erlotinib; C, crizotinib; HRT, hyperfractionated radiotherapy.

Table 5 Selected trials of radiotherapy combined with tyrosine kinase inhibitors in oligopersistent oncogene-driven NSCLC

Author, ref.	No pts	Molecular status	Therapy	Median PFS (months)	Median OS (months)	Toxicity
Gomez et al., (87)	49	EGFR+ 6 ALK+ 2 No aberration 41	Systemic therapy + local consolidative therapy	14.2	41.2	G3 in local consolidative therapy group: esophagitis 2 patients, anaemia 1 patient, pneumothorax 1 patient, abdominal pain 1 patient, No G4-5 toxicities
Elamin et al., (90)	12	EGFR+	EGFR TKI + SBRT, HRT or surgery	36	NR	No G4 toxicities
Xu et al., (91)	51	EGFR+	EGFR TKI + Arm A: SBRT to all residual metastatic sites	20.6	40.9	G≥3, esophagitis 16.9%, pneumonitis 7.7%
			Arm B: SBRT to primary tumor and oligometastatic sites	15.6	34.1	
			Arm C: no SBRT	13.9	30.8	

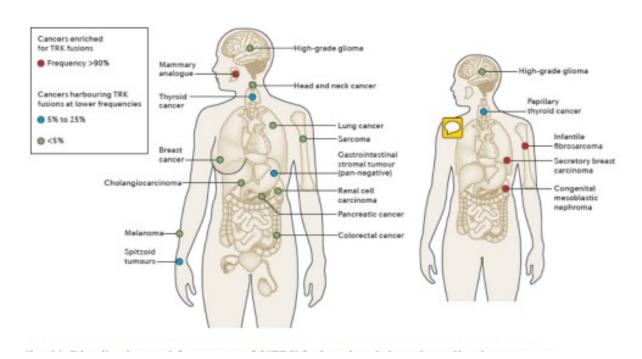
ref, reference; pt, patient; PFS, progression free survival; OS, overall survival; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; SBRT, stereotactic body radiotherapy; NR, not reached; HRT, hypofractionated radiotherapy.


Multiple lesions**

See Initial systemic therapy options**.yy
Adenocarcinoma (NSCL-K 1 of 5) or
Squamous Cell Carcinoma (NSCL-K 2 of 5

NCCN Clinical Practice Guidelines – Breast Cancer – v.08.2021 Cristofanilli et al, 2018; Hurvitz et al 2019; Slamon et al 2019; Sledge et al. 2019

estigator	Central				
essment N = 55)	Assessment (N = 55)				
per	cent				
(67–90)	75 (61–85)				
64‡	62				
16	13				
9	13				
11	9				
0	4				


ılar profile

Drilon A et al NEJM 2018;378:371:731-9

LAROTRECTENIB: biomolecular effect

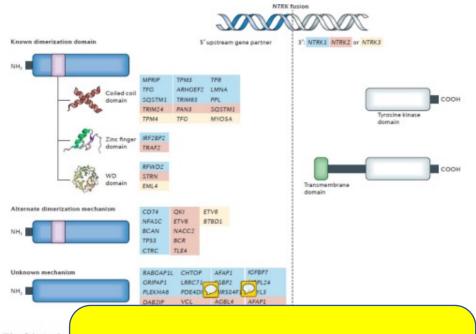


Fig. 3 |. Activa

POSSIBLE ROLE OF RADIOTHERAPY IN OLIGOPROGRESSIVE DISEASE

NEED OF MORE CLINICAL DATA

NTRK fusion-positive cancers and TRK inhibitor therapy (nih.gov)

Conclusion

- Cancer therapies are becoming even more intelligent, tracking a specific driver for damaging cancer cells and reducing systemic side effects
- In some setting, radiotherapy can have a sinergic effect with a good clinical compliance
- Further studies are needed, for choicing timing of association and dose of radiotherapy

THANK YOU FOR YOUR ATTENTION

